

29 January 2000

Riley M. Duren
Sr. Member of Technical Staff
Jet Propulsion Laboratory
California Institute of Technology
riley.m.duren@jpl.nasa.gov
818-354-5753

Agenda

- Problem statement
- SRTM Programmatics
- Expected Coverage
- IFSAR Concepts & Theory of Operation
- System Overview
 - payload bay hardware
 - mast
 - outboard antenna
 - attitude & orbit determination avionics (AODA)
 - GPS receivers
 - metrology instruments
 - crew cabin equipment
- Mission Operations
- Summary

Problem: We need better topo-maps!

(we have better global maps of Venus than we do of Earth)

SRTM Programmatic Summary

Mission Objectives

- acquire data over 80% of Earth's land mass (60 deg N to 58 deg S latitudes) and produce topographic products to ITHD-2 specifications
- Interferometric Terrain Height Data (ITHD)-2 specifications: 30 m x 30 m spatial posting with ≤16 m absolute vertical (linear) accuracy and ≤10 m relative vertical accuracy at the 90% (1.6 σ) level
- C-band will meet all of the above objectives; X-band will do the same except 6 m relative vertical accuracy and 32% coverage (50 km swath)

Sponsors

NASA, National Imagery and Mapping Agency (NIMA, DoD), German Aerospace
 Center (DLR, Deutsches Zentrum für Luft- und Raumfart e.V.)

Implementation

- Fixed Baseline Interferometric SAR (IFSAR) at two wavelengths (C- and X-band) (advantages vs. repeat pass interferometry)
- Managed by JPL & DLR
- 11-day shuttle mission to acquire global data set
- 3 year development phase & 12 month data processing phase
- Modified existing SIR-C/X-SAR hardware with the addition of 2nd channel to form an interferometric SAR (IFSAR)
- New components including a 60 meter mast and metrology system added
- Principle contractors: Dornier, Ball, AEC-ABLE, COI, ATC, LM, TBC, Leica

SRTM C-Band Ground Coverage

10-DAY MISSION; 159 ORBITS (NOT INCLUDING CALIBRATION OCEAN DATATAKES)

SRTM X-band Ground Coverage

SRTM Misc. Facts

Cost: \$141M

- Mass & Energy (BIG)
 - mass = 13, 600 kg (29,000 lbs or 14.5 tons)
 - energy = 900 KW-hours (80 hours of radar operation)
- Potential Data Uses
 - scientific: geology, hydrology (flood & lahar forecasting), volanic/seismic research, etc
 - commercial: aircraft navigation and ground proximity warning systems, land-use planning, cell phone tower placement, etc
 - military: flight simulators, logitistics planning, battlefield management
- Firsts
 - first fixed baseline, spaceborne IFSAR
 - largest rigid space structure (mast is about twice the length of the MIR space station)
- Data Volume
 - 270 Mbps or 34 Mbytes per second (fill a 10 Gbyte hard-drive in 5 minutes)
 - 9.8 Tbytes total data volume (equivalent to 15,000 CD-ROMs roughly equivalent to the US Library of Congress)

Shuttle Hauai Topes ... DLR Using IFSAR to measure topography

From SRL/SIR-C: LONG VALLEY, CALIFORNIA

Theory of Operation

Payload Bay Hardware - I

Payload Bay Hardware - II

approximate view from shuttle crew cabin

photos taken in the space-station processing facility (SSPF) - May 1999

Mast

Purpose:

- deploys the 960 lb "outrigger" radar antenna
- routes wire harness, coax cables, and cold-gas hose to antenna
- provide 0.5 inch deployment repeatability

Challenges:

- safety issues associated with large deployed structure
- bending & twisting requires mechanism for antenna alignment
- cold-gas thruster at mast tip required to counteract the long moment arm generated by the mast/antenna
- control system stability issues (had to add dampers to prevent resonant instability &/or excessive propellant consumption)

Outboard Structure and Actuator Assembly

AODA Electronics

Electronic Distance Meters (x 4) - Measures baseline distance

- between inboard and outboard antennas
- Leica D12002 w/ JPL qualification and packaging

ASTROS Target Tracker

- Track LED's on the outboard antenna to determine baseline attitude
- JPL-developed; flown twice
- Mods to optics, firmware, and electronics for SRTM

AODA provides precision baseline metrology and platform attitude and orbit determination necessary for post-flight SRTM height reconstruction

AODA provides engineering data for inflight operations

GPS Receivers* (x 4)

- Provides GPS-based position and velocity measurements
- JPL-developed "Turbo-Rogue" receiver
- 'Antenna/LNA shown

Inertia Reference Unit

- Measures attitude change of inboard platform
- Teledyne Dry Rotor Inertial Reference Unit (DRIRU-II); flown twice

Star Tracker Assembly

- Measures absolute attitude of inboard platform
- LMMS AST-201; nearly identical to unit delivered to NMP-DS1

AODA Electronics (cont'd)

- GPS Receivers* (x2)
- Provides flight component of "GPS" solution for SRTM position
- JPL-developed"Turbo Rogue"space receiver
- * Digital slice shown

- Sensor Interface Unit*
- Command, data, power and timing mux/demux
- JPL-developed
- * Breadboard shown

- ASTROS Target Tracker

 Tracks LED's on the
 outboard antenna to
 determine baseline attitude
- JPL-developed; flown twice

- On-Board Computer (x 2)
- Controls sensors, process and archive data
- IBM Thinkpad 760 w/ mod.
- JPL- developed SW
- Located in crew cabin

AODA GPS Receivers

- requirements:
 - provide shuttle state vector good to 1 meter & 5 cm/s (1.6σ)
 - provide 100 μs time-tags to sync position solutions with radar data (avoid pixel registration errors due to along-track velocity)
- JPL-developed "Blackjack" GPS receivers (2)
 - based on proven "Turborogue" space GPS receivers
 - SRTM version supports 7 channels
 - tracks P1 & P2 (Y-codeless implementation)
 - provides dual freq pseudorange & carrier phase observables
- 1 m accuracy achieved by combining onboard receiver data (post-flight) with contemporaneously archived data from international ground network of GPS receivers (i.e., global differential GPS) - based on proven TOPEX/Poseidon GIPSY/OASYS precision orbit determination experiments
- 1 μs time-stamps provided in telemetry (referenced to C- and X-band radar supplied 1 pulse per second sync signals)
- for more details about the SRTM GPS receivers, contact:

Dr. Larry Young, JPL, 818-354-5018

Crew Cabin Hardware

- * On-Line Laptops Do Not Reflect Actual Flight Configuration
- * Not Shown: RDA 3/PHRR 4 in MAR
 PHRR Spare in Volune D
 HDDTs (>264) in Locker
 PIC/RDA/APC Spares in Locker

Mission Operations

- 11 day shuttle mission with 10 day s of SRTM operation
- 6 member astronaut crew (1 pilot/commander and 2 mission specialists per shift)
- ~200 personnel for SRTM ground control team
 - 50 per shift at the Payload Operations Control Center at JSC in Houston
 - 20 per shift at JPL in Pasadena
- first 12 hours dedicated to activation and checkout
- "fly cast" trim burns required once per day to maintain orbit altitude
- remaining time spent mapping (all major landmasses and islands within range plus some ocean calibration passes) ~ 80 hours total radar operation

Mission Operations Subsystems

On-Orbit Checkout Timeline (approximate)

Time since launch	Activity
(days/hours:minutes)	
0/02:00	open payload bay doors
0/02:30	begin SRTM electronics activation (crew & ground command)
0/05:30	deploy mast & verify safe
0/06:30	flip outboard antenna
0/07:00	activate GPS & start radar checkout
0/07:30	first thruster pulse test (without dampers)
0/08:00	uncage mast dampers
0/08:30	second truster pulse test (with dampers)
0/09:00	rough antenna alignment
0/09:45	activate cold gas thruster
0/10:30	use pulse test results to confirm no control system interaction -collapse deadband
0/12:00	first fly-cast test
0/13:00	analyze radar & AODA data to determine any electrical/mechanical alignment bias
0/13:30	precision antenna alignment
0/14:30	OOCO complete - mapping begins

Summary

- SRTM will produce a uniform global (80%) topography data set twice as accurate as existing date set
 - Significant impacts in many applications, including national security and scientific applications
 - Data very useful for C and X radar interferometric phenomenology studies
- SRTM will provide global (80%) C-band and partial X-band scattering maps which can be used for large scale classification
- SRTM will be the first spaceborne fixed baseline interferometric SAR
 - Pushing state-of-the-art technologies which will lead to better design and implementation for future interferometric SAR missions
 - Advantages over repeat pass interferometry, immune to temporal decorrelation and other time dependent disturbances